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Energy stability bounds on convective heat transport: Numerical study
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The concept of nonlinear energy stability has recently been extended to deduce bounds on energy dissipation
and transport in incompressible flows, even for turbulent flows. In this approach an effective stability condition
on “background” flow or temperature profiles is derived, which when satisfied ensures that the profile pro-
duces a rigorous upper estimate to the bulk dissipation. Optimization of the test background profiles in search
of the lowest upper bounds leads to nonlinear Euler-Lagrange equations for the extremal profile. In this paper,
in the context of convective heat transport in the Boussinesq equations, we describe numerical solutions of the
Euler-Lagrange equations for the optimal background temperature and present the numerical computation of
the implied bounds[S1063-651X97)05706-1

PACS numbes): 47.27.Te, 03.40.Gc, 47.27.Cn, 47.27.Ak

The idea that notions of stability—usually reserved for the Consider an incompressible Newtonian fluid confined to
characterization obtatic stationary states—may be applied the rectangular volume between rigid noslip isothermal
to dynamic and eventurbulent phenomena has been pro- plates atz=0 and 1. A vertical temperature gradient is im-
posed at various times and in various contexts. The moderposed, so in the usual nondimensional units the fluid’s veloc-
concept of spontaneously self-imposed marginal stabilityity vector field u(x,t)=(u;,u,,us) and temperature field
was proposed in the context of thermal convection in ther(y t) satisfy the Boussinesq equations
1950s[1], later resulting in quantitative predictions for the
bulk heat transpoifi2]. More recently, these sentiments have Ju
been given a rigorous formulation in the context of the dy- ¢ TU-Vu+Vp=cAu+oRaT, (1)
namics of incompressible fluids. Building on a mathematical
device invented by Hopff3], and utilizing a decomposition

referred to as the background field methHddb], it has now V-u=0, @
become possible to formulate variational principles for upper JT
bounds on the time averaged rate of heat transport where the L fU-VT=AT 3)

key constraint on the background profiles over which the at

variation takes place is technically identical to a nonlinear

energy stability6] condition. The optimization problem pro- Where o=v/k is the Prandtl numbeta ratio of material
duces nonlinear Euler-Lagrange equations for the “marginfarameters, the kinematic viscosityand thermal diffusivity
ally stable” profile yielding the lowest upper bound. Inter- x) and Ra=gadTh% v« is the Rayleigh numbefg is the
estingly, in some cases these Euler-Lagrange equations a&eceleration of gravityx is thermal expansion coefficient,
of the same functional form as those found in Howard'sST is the temperature drop across the gap, anid gap
theory of bounds on flow quantities in statistically stationarywidth), andk is the unit vector in the direction. The bound-
stateq 7], and with regard to the functional geometry of the ary conditions are no-slipu=0) on thez=0 and z=1
constraints further connection has been established withlanes,T=0 on top, andT=1 on bottom, periodic in the
Busse’s multiple boundary layer theof] of Howard’s horizontal directions with periods, andL,, respectively.

bounds. The Nusselt number is the ratio of tlilargest possible
In this Brief Report we present the results of a numericalong time averagedotal heat transport to the purely conduc-
study of the solutions of the Euler-Lagrange equations fotive heat transport:
the optimal background profile. This study represents a prac- L ) ) )
tical implementation of the optimal methods developed in _ X y
Ref. [5], and it illustrates some of the features that are ex- I\Iu_lJr<LxLy fo dxfo dyfo dz U3T>' @
pected in this kind of analysis. In particular, we observe that
the optimal marginally stable profile may exist on different The following theorem is proved in Ref5]: Let 7(z) be a
branches of solutions of the Euler-Lagrange equations, witfunction satisfying the imposed temperature boundary condi-
the signal for the qualitative structural change being a changgons, i.e.,7(0)=1 and7(1)=0. Define(z) according to
in “stability” of the solution.
dr(z)
'70(2)_1+ dz '’ (5)
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1 unigue solution to the optimization problem. The optimal
jo #(z)dz=0. (6)  profile is just marginally “stable,” and the Euler-Lagrange
equations are the ground-state problem Eg5s-(13) closed
Then by
Y P _ S R B! (0)
Nusi+inf{ | ¥(2)%dz}, (7) P(2)=a . dx . dy v3'(x,y,2)0”)(X,y,2)
0

where the minimization is performed over mean zero func-
tions (z) constrained by the “stability” conditior{spec-
tral” constrain} that

1 Ly Ly .
—f dz’f dx’f dy v (x',y’,z')
0 0 0

X 0<°)(x’,y’,z’)), (19

Ly Ly 1 1 5
Ous{v,a}—fo dXJo dyJOdz|ﬁ|Vv|
wherea is the Lagrange multiplier used to enforce the mar-
ginal stability constraint, and the superscrif@sindicate the
ground-state eigenfunctions associated wjthAltogether,
Egs.(9)—(15) constitute a nonlocal nonlinear elliptic bound-
for all divergence-free vector fieldg(x) and temperature ary value problem in which the Lagrange multiplieris to
fluctuation fieldsé satisfying homogeneous boundary condi- pe adjusted so that the lowest eigenvak{®=0. The opti-
tions, i.e., vanishing on the rigid boundaries. mal temperature profile is subsequently reconstructed from

The condition in Eq.(8) is justifiably referred to as a the resulting eigenfunctiong® and 6©).
“stability” constraint because it is the direct analogy of the  Because the spectral problem is translation invariant in
sufficient condition for nonlinear energy stability that would the horizontal directions, it may be separated via the Fourier
apply to 7(z) if it werea profile corresponding to a static transform. The general solution to the Euler-Lagrange equa-
solution of the Boussinesq equations, the only difference betions may be a combination of any number of individual
ing a factor of 4 rescaling of the Rayleigh number. The conorizontal wave numbers, but for the case of a single wave-
dition in Eq.(8) is also called a spectral constraint because ihumber the problem may be reduce@ge Ref[5] for a de-

1
+((2)~2)v30+3 |V0|2] ®

is equivalent to the non-negativity of the loweground
statg eigenvaluex (9) of the self-adjoint problem

Avi=—0A op 9
n=—chn+ 5, ©
ap
)\VZZ—O'AVZ‘FW, (10
ap
ANvy3=—0cAvy+ E—Fa’ Ra ¥(z)—2)0, (11
(?V]_ (91)2 &V3
= Ty T (12
NO=—A0+(p(2)—2)vs, (13

with boundary conditiong=0 and#=0 forz=0 and 1, and
everything periodic irx andy. In the abovep is a Lagrange
multiplier enforcing incompressibility, and the eigenvalue

tailed derivation to

0=k 2(—D2+k?)2w+ JRa y(z) - 2) 6, (16)
0=(—D2+k?) 6+ JRa #(z) — 2)w, 17)

where D=4/dz, the boundary conditions are =0w(0)
=Dw(0)=w(1)=Dw(1)=060(0)=#6(1), and

Y(2)=alw(z)6(z)—1], (18)
and « is to be adjusted so that the solution is normalized
according to

1= jlw(z) 6(z)dz. (19

0

The bound is then achieved by maximizing the upper esti-
mate in Eq.(7) over the horizontal wave numbé®, and
then checking that the resulting background profile is indeed

is the Lagrange multiplier enforcing the natural normaliza- Stable.” That is, once the candidate optimal profié” and

tion for the eigenfunctions,

1
T 2 2
1= —— IvI3+ 1013 a9

the associated wave numideP' has been identified by solv-
ing Egs.(16)—(19), it must be confirmed that the “stability”
condition is satisfied. This condition is equivalent to the non-
negativity forall values ofk? of all the eigenvalues of the
linear problem

In Ref.[5] it was shown that for all Ra, the constrained set

of test functionsy(z) is both nonempty and convex. Non- pw=k2(—D2+k?)2w+ R y°P'-2)0,  (20)
emptyness of the set was established by constructing a
“stable” profile, and then elementary inequalities and as- wh=(—D?+k?) 6+ \/ﬁa(z//"p‘— 2)w, (21

ymptotics were used to produce explicit estimates culminat-
ing in the rigorous upper bound NYRa/36Y?—1, uniform  with  boundary conditions 8w(0)=Dw(0)=w(1)
in the Prandtl number. Convexity ensures that there is a =Dw(1)=60(0)= 6(1). Thelow-lying spectrum of this lin-
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FIG. 1. Bounds on Nu as a function of Ra. The numerical back- FIG. 2. Checking the “stability” of the optimal profile, the
ground field result is the discrete data, with the solid line to guidespectrum of the linear problem in EqR0) and (21). For Ra=23
the eye. The upper dashed line is the upper bound on the uppend 100(solid line) the spectrum is non-negative, while for Ra
bound computed in Ref5], while the lower solid line is the bound =23 200(dashed ling there is a negative branch, indicating “in-
for statistically stationary flows computed numerically from stability.”
Howard’s theory. The lower points are Rossby’s experimental data
for silicone oil. context of shear flow that the variational principle may be

quantitatively improved by making different choices in its

ear operator is straightforward to calculate numerically oncdormulation to bring the transition point right up to the en-
the optimal profile has been computed. ergy stability boundary9] (in this case the transition point

The problem in Eqs(16)—(19) was solved numerically for the bound may be brought right up to Ral708 [10].
using using a relaxation method with five-point difference  Also plotted in Fig. 1 for comparison aré) the rigorous
approximations for all the derivatives, second order for theupper estimate on the bound for the single-wave-number
fourth derivatives, and fourth order for the second derivacase as derived in Reff5], Nu<1+0.257 R&"® (top dashed
tives. The leading truncation error terms were in the sixthline), (ii) the single-wave-number bound computed numeri-
derivative of the solution. At the boundaries, the solutioncally [11,12 via Howard’s method for statistically stationary
was extended to two fictitious points where the extrapolatiorflows (lower solid ling, and(iii) Rossby’s experimental heat
was chosen to satisfy a five-point difference approximatiortransfer data[13] for silicon oil with Prandtl numbero
of the boundary conditions as well as the finite difference=200 (lower discrete poinis For large Ra, the upper bound
approximation of the equations at the boundary. This augeomputed by the optimal background field method in Fig. 1
mented the original boundary conditions with the compatibil-scales~R&® an asymptotic analysis of the bound com-
ity conditions D26(0)=0 and D*w(0)=2k?D?w(0). The puted in Ref[10] from Egs.(16)—(19) yields the large Ra
asymmetric extrapolation formulé(—z) = — 6(z) was used approximation~0.190x Ra® about 26% below the rigor-
for 6 nearz=0. These boundary conditions introduce anous upper bound on the bound0.257x R&® obtained in
O(Az) error in the discrete approximation which decays ex-Ref. [5] in very good agreement with the numerical results
ponentially into the interior so that the global error waspresented here, and just about 50% above the analogous
O(AZz%). Symmetry conditions were imposed at midinterval asymptotic result for Howard’s method.
(z=3) and convergence was checked by comparing solu- The background profile result is not a valid upper bound
tions with 41, 51, 61, and 71 discretization points on theon the heat transport unless the proposed background tem-
interval [0,3]. The Lagrange multiplier was adjusted so thatperature profile is “stable,” however. This is determined by
Eq. (19) was satisfied to within an error of 16, evaluating the spectrum of the eigenvalue problem in E(0) and
the integral with a fourth-order cubic Hermite quadrature(21), and in Fig. 2 we plot the spectrum of eigenvalyefor
rule. Then, after finding the solutiofi(z) for each value of two different proposed optimal profiles at two different val-
k?, [4? was maximized ovek?. ues of Ra, as functions of the horizontal wave number. Up to

The results of this procedure are the discrete data with th®a= 23 100(solid line), we observe that the spectrum is non-
solid interpolation curvéto guide the eyeplotted in Fig. 1.  negative with the lowest eigenvalue O precisely at the wave
The upper bound on the heat transport obtained in this wapumber corresponding to the “marginally stable” optimal
departs from the conduction value (Nd) at Ra=Ra/4 mode, neark?~28 at Ra=23100. However, for Ra
=427 where Rg= 1708 is the critical value of the Rayleigh =23 200 (dashed ling we find that while the “marginally
number where the conduction solution becomes unstable-stable” optimal mode remains nekf~ 28, a set of modes at
unstable in the usual sense of both linear stability and nonkigher wave number around~55 has become “unstable.”
linear energy stability. The factor 4 rescaling is an artifact ofHence the single-wave-number solution of the Euler-
particular choices made in the derivation of the variationalLagrange equations for the extremal background profile no
bound in Ref.[5] and it has recently been shown in the longer yields the optimal bound for R®23 200. As dis-
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cussed in detail in Ref5], the true optimal solution transfers mate of the scaling and corrections to scaling on the heat
to a branch involving two wave numbers as with the analotransport bounds in the asymptotic limit Rac. Another
gous transition predicted by Busse for Howard's bounds. challenge is to realize the full power of the background field
The numerical results presented here give a quantitativehethod by exploiting as-yet neglectsthtistical regularity

representation of the rigorous results developed in B&f.  [17] of turbulent flows and emerging ideas sthtistical sta-
In particular, they allow for quantitative evaluation and aypjjity [18].

comparison of the bounds derived by the background field

method with Howard's theory for statistically stationary @ We are grateful to R. Nicodemus, S. Grossmann, M.
flows. We observe that the approaches give qualitativelyHolthaus, and R. Kerswell for providing us with results of

similar results for the problem at harfend also when ap- their research prior to publication, and to R. Worthing for
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background field method and Howard's theory. We note thagenter for Nonlinear Studies at Los Alamos National Labo-
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metry necessary to formulate Howard's thept$,16. One  piy 9514715 and PHY-9696187, and DOE/BES Program
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thermal convection is to produce an accurate numerical esti-
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