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Energy stability bounds on convective heat transport: Numerical study
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The concept of nonlinear energy stability has recently been extended to deduce bounds on energy dissipation
and transport in incompressible flows, even for turbulent flows. In this approach an effective stability condition
on ‘‘background’’ flow or temperature profiles is derived, which when satisfied ensures that the profile pro-
duces a rigorous upper estimate to the bulk dissipation. Optimization of the test background profiles in search
of the lowest upper bounds leads to nonlinear Euler-Lagrange equations for the extremal profile. In this paper,
in the context of convective heat transport in the Boussinesq equations, we describe numerical solutions of the
Euler-Lagrange equations for the optimal background temperature and present the numerical computation of
the implied bounds.@S1063-651X~97!05706-1#

PACS number~s!: 47.27.Te, 03.40.Gc, 47.27.Cn, 47.27.Ak
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The idea that notions of stability—usually reserved for t
characterization ofstatic stationary states—may be applie
to dynamic, and eventurbulent, phenomena has been pr
posed at various times and in various contexts. The mod
concept of spontaneously self-imposed marginal stab
was proposed in the context of thermal convection in
1950s@1#, later resulting in quantitative predictions for th
bulk heat transport@2#. More recently, these sentiments ha
been given a rigorous formulation in the context of the d
namics of incompressible fluids. Building on a mathemati
device invented by Hopf@3#, and utilizing a decomposition
referred to as the background field method@4,5#, it has now
become possible to formulate variational principles for up
bounds on the time averaged rate of heat transport where
key constraint on the background profiles over which
variation takes place is technically identical to a nonline
energy stability@6# condition. The optimization problem pro
duces nonlinear Euler-Lagrange equations for the ‘‘marg
ally stable’’ profile yielding the lowest upper bound. Inte
estingly, in some cases these Euler-Lagrange equations
of the same functional form as those found in Howar
theory of bounds on flow quantities in statistically stationa
states@7#, and with regard to the functional geometry of th
constraints further connection has been established
Busse’s multiple boundary layer theory@8# of Howard’s
bounds.

In this Brief Report we present the results of a numeri
study of the solutions of the Euler-Lagrange equations
the optimal background profile. This study represents a p
tical implementation of the optimal methods developed
Ref. @5#, and it illustrates some of the features that are
pected in this kind of analysis. In particular, we observe t
the optimal marginally stable profile may exist on differe
branches of solutions of the Euler-Lagrange equations, w
the signal for the qualitative structural change being a cha
in ‘‘stability’’ of the solution.
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Consider an incompressible Newtonian fluid confined
the rectangular volume between rigid noslip isotherm
plates atz50 and 1. A vertical temperature gradient is im
posed, so in the usual nondimensional units the fluid’s vel
ity vector field u(x,t)5(u1 ,u2 ,u3) and temperature field
T(x,t) satisfy the Boussinesq equations

]u

]t
1u•“u1“p5sDu1sRakT, ~1!

“•u50, ~2!

]T

]t
1u•“T5DT, ~3!

where s5n/k is the Prandtl number~a ratio of material
parameters, the kinematic viscosityn and thermal diffusivity
k! and Ra5gadTh3/nk is the Rayleigh number~g is the
acceleration of gravity,a is thermal expansion coefficien
dT is the temperature drop across the gap, andh is gap
width!, andk is the unit vector in thez direction. The bound-
ary conditions are no-slip (u50) on the z50 and z51
planes,T50 on top, andT51 on bottom, periodic in the
horizontal directions with periodsLx andLy , respectively.

The Nusselt number is the ratio of the~largest possible
long time averaged! total heat transport to the purely condu
tive heat transport:

Nu511K 1

LxLy
E
0

Lx
dxE

0

Ly
dyE

0

1

dz u3TL . ~4!

The following theorem is proved in Ref.@5#: Let t(z) be a
function satisfying the imposed temperature boundary con
tions, i.e.,t(0)51 andt(1)50. Definec(z) according to

c~z!511
dt~z!

dz
, ~5!

so that
7775 © 1997 The American Physical Society
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E
0

1

c~z!dz50. ~6!

Then

Nu<11 infH 1
2 E

0

1

c~z!2dzJ , ~7!

where the minimization is performed over mean zero fu
tionsc(z) constrained by the ‘‘stability’’ condition~‘‘spec-
tral’’ constraint! that

0<Hc$v,u%5E
0

Lx
dxE

0

Ly
dyE

0

1

dzH 1

2Ra
u“vu2

1~c~z!22!n3u1
1

2
u“uu2J ~8!

for all divergence-free vector fieldsv(x) and temperature
fluctuation fieldsu satisfying homogeneous boundary con
tions, i.e., vanishing on the rigid boundaries.

The condition in Eq.~8! is justifiably referred to as a
‘‘stability’’ constraint because it is the direct analogy of th
sufficient condition for nonlinear energy stability that wou
apply to t(z) if it were a profile corresponding to a stat
solution of the Boussinesq equations, the only difference
ing a factor of 4 rescaling of the Rayleigh number. The co
dition in Eq.~8! is also called a spectral constraint becaus
is equivalent to the non-negativity of the lowest~ground
state! eigenvaluel (0) of the self-adjoint problem

ln152sDn11
]p

]x
, ~9!

ln252sDn21
]p

]y
, ~10!

ln352sDn31
]p

]z
1s Ra~c~z!22!u, ~11!

05
]n1
]x

1
]n2
]y

1
]n3
]z

, ~12!

lu52Du1~c~z!22!n3 , ~13!

with boundary conditionsv50 andu50 for z50 and 1, and
everything periodic inx andy. In the above,p is a Lagrange
multiplier enforcing incompressibility, and the eigenvaluel
is the Lagrange multiplier enforcing the natural normaliz
tion for the eigenfunctions,

15
1

s Ra
ivi2

21iui2
2. ~14!

In Ref. @5# it was shown that for all Ra, the constrained s
of test functionsc(z) is both nonempty and convex. Non
emptyness of the set was established by constructin
‘‘stable’’ profile, and then elementary inequalities and a
ymptotics were used to produce explicit estimates culmin
ing in the rigorous upper bound Nu<~Ra/36!1/221, uniform
in the Prandtl numbers. Convexity ensures that there is
-

e-
-
it

-

t

a
-
t-

unique solution to the optimization problem. The optim
profile is just marginally ‘‘stable,’’ and the Euler-Lagrang
equations are the ground-state problem Eqs.~9!–~13! closed
by

c~z!5aS E
0

Lx
dxE

0

Ly
dy n3

~0!~x,y,z!u~0!~x,y,z!

2E
0

1

dz8E
0

Lx
dx8E

0

Ly
dy8n3

~0!~x8,y8,z8!

3u~0!~x8,y8,z8! D , ~15!

wherea is the Lagrange multiplier used to enforce the m
ginal stability constraint, and the superscripts~0! indicate the
ground-state eigenfunctions associated withc. Altogether,
Eqs.~9!–~15! constitute a nonlocal nonlinear elliptic bound
ary value problem in which the Lagrange multipliera is to
be adjusted so that the lowest eigenvaluel (0)50. The opti-
mal temperature profile is subsequently reconstructed f
the resulting eigenfunctionsv(0) andu (0).

Because the spectral problem is translation invarian
the horizontal directions, it may be separated via the Fou
transform. The general solution to the Euler-Lagrange eq
tions may be a combination of any number of individu
horizontal wave numbers, but for the case of a single wa
number the problem may be reduced~see Ref.@5# for a de-
tailed derivation! to

05k22~2D21k2!2w1ARa~c~z!22!u, ~16!

05~2D21k2!u1ARa~c~z!22!w, ~17!

where D5]/]z, the boundary conditions are 05w(0)
5Dw(0)5w(1)5Dw(1)5u(0)5u(1), and

c~z!5a@w~z!u~z!21#, ~18!

and a is to be adjusted so that the solution is normaliz
according to

15E
0

1

w~z!u~z!dz. ~19!

The bound is then achieved by maximizing the upper e
mate in Eq.~7! over the horizontal wave numberk2, and
then checking that the resulting background profile is inde
‘‘stable.’’ That is, once the candidate optimal profilecopt and
the associated wave numberkopt has been identified by solv
ing Eqs.~16!–~19!, it must be confirmed that the ‘‘stability’’
condition is satisfied. This condition is equivalent to the no
negativity forall values ofk2 of all the eigenvalues of the
linear problem

mw5k22~2D21k2!2w1ARa~copt22!u, ~20!

mu5~2D21k2!u1ARa~copt22!w, ~21!

with boundary conditions 05w(0)5Dw(0)5w(1)
5Dw(1)5u(0)5u(1). Thelow-lying spectrum of this lin-
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ear operator is straightforward to calculate numerically o
the optimal profile has been computed.

The problem in Eqs.~16!–~19! was solved numerically
using using a relaxation method with five-point differen
approximations for all the derivatives, second order for
fourth derivatives, and fourth order for the second deri
tives. The leading truncation error terms were in the si
derivative of the solution. At the boundaries, the soluti
was extended to two fictitious points where the extrapolat
was chosen to satisfy a five-point difference approximat
of the boundary conditions as well as the finite differen
approximation of the equations at the boundary. This a
mented the original boundary conditions with the compatib
ity conditionsD2u(0)50 andD4w(0)52k2D2w(0). The
asymmetric extrapolation formulau(2z)52u(z) was used
for u near z50. These boundary conditions introduce
O(Dz) error in the discrete approximation which decays e
ponentially into the interior so that the global error w
O(Dz2). Symmetry conditions were imposed at midinterv
(z5 1

2) and convergence was checked by comparing s
tions with 41, 51, 61, and 71 discretization points on t
interval @0,12#. The Lagrange multiplier was adjusted so th
Eq. ~19! was satisfied to within an error of 1025, evaluating
the integral with a fourth-order cubic Hermite quadratu
rule. Then, after finding the solutionc(z) for each value of
k2, *c2 was maximized overk2.

The results of this procedure are the discrete data with
solid interpolation curve~to guide the eye! plotted in Fig. 1.
The upper bound on the heat transport obtained in this
departs from the conduction value (Nu51) at Ra5Rac/4
5427 where Rac51708 is the critical value of the Rayleig
number where the conduction solution becomes unstab
unstable in the usual sense of both linear stability and n
linear energy stability. The factor 4 rescaling is an artifact
particular choices made in the derivation of the variatio
bound in Ref.@5# and it has recently been shown in th

FIG. 1. Bounds on Nu as a function of Ra. The numerical ba
ground field result is the discrete data, with the solid line to gu
the eye. The upper dashed line is the upper bound on the u
bound computed in Ref.@5#, while the lower solid line is the bound
for statistically stationary flows computed numerically fro
Howard’s theory. The lower points are Rossby’s experimental d
for silicone oil.
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context of shear flow that the variational principle may
quantitatively improved by making different choices in i
formulation to bring the transition point right up to the e
ergy stability boundary@9# ~in this case the transition poin
for the bound may be brought right up to Rac51708! @10#.

Also plotted in Fig. 1 for comparison are:~i! the rigorous
upper estimate on the bound for the single-wave-num
case as derived in Ref.@5#, Nu<110.257 Ra3/8 ~top dashed
line!, ~ii ! the single-wave-number bound computed nume
cally @11,12# via Howard’s method for statistically stationar
flows ~lower solid line!, and~iii ! Rossby’s experimental hea
transfer data@13# for silicon oil with Prandtl numbers
5200 ~lower discrete points!. For large Ra, the upper boun
computed by the optimal background field method in Fig
scales;Ra3/8: an asymptotic analysis of the bound com
puted in Ref.@10# from Eqs.~16!–~19! yields the large Ra
approximation'0.1903Ra3/8, about 26% below the rigor-
ous upper bound on the bound;0.2573Ra3/8 obtained in
Ref. @5# in very good agreement with the numerical resu
presented here, and just about 50% above the analo
asymptotic result for Howard’s method.

The background profile result is not a valid upper bou
on the heat transport unless the proposed background
perature profile is ‘‘stable,’’ however. This is determined
the spectrum of the eigenvalue problem in Eqs.~20! and
~21!, and in Fig. 2 we plot the spectrum of eigenvaluesm for
two different proposed optimal profiles at two different va
ues of Ra, as functions of the horizontal wave number. Up
Ra523 100~solid line!, we observe that the spectrum is no
negative with the lowest eigenvalue 0 precisely at the w
number corresponding to the ‘‘marginally stable’’ optim
mode, near k2'28 at Ra523 100. However, for Ra
523 200 ~dashed line! we find that while the ‘‘marginally
stable’’ optimal mode remains neark2'28, a set of modes a
higher wave number aroundk2'55 has become ‘‘unstable.’
Hence the single-wave-number solution of the Eul
Lagrange equations for the extremal background profile
longer yields the optimal bound for Ra>23 200. As dis-

-
e
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ta

FIG. 2. Checking the ‘‘stability’’ of the optimal profile, the
spectrum of the linear problem in Eqs.~20! and ~21!. For Ra523
and 100~solid line! the spectrum is non-negative, while for R
523 200 ~dashed line! there is a negative branch, indicating ‘‘in
stability.’’
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cussed in detail in Ref.@5#, the true optimal solution transfer
to a branch involving two wave numbers as with the ana
gous transition predicted by Busse for Howard’s bounds

The numerical results presented here give a quantita
representation of the rigorous results developed in Ref.@5#.
In particular, they allow for quantitative evaluation and
comparison of the bounds derived by the background fi
method with Howard’s theory for statistically stationa
flows. We observe that the approaches give qualitativ
similar results for the problem at hand~and also when ap
plied to shear flow@14#! but show quantitative difference
which, as previously noted, depend on details of the form
lation of the variational bounds. Indeed, in Ref.@10# identical
bounds are obtained~by approximate methods! from both the
background field method and Howard’s theory. We note t
the background field method is applicable to more gen
problems that do not have the geometric or statistical s
metry necessary to formulate Howard’s theory@15,16#. One
open question with regard to the background field method
thermal convection is to produce an accurate numerical e
th
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mate of the scaling and corrections to scaling on the h
transport bounds in the asymptotic limit Ra→`. Another
challenge is to realize the full power of the background fie
method by exploiting as-yet neglectedstatistical regularity
@17# of turbulent flows and emerging ideas ofstatistical sta-
bility @18#.
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